Thuật toán KMP Thuật toán Knuth–Morris–Pratt

Ví dụ cho thuật toán tìm kiếm

Để minh họa chi tiết thuật toán, chúng ta sẽ tìm hiểu từng quá trình thực hiện của thuật toán. Ở mỗi thời điểm, thuật toán luôn được xác định bằng hai biến kiểu nguyên, mi, được định nghĩa lần lượt là vị trí tương ứng trên S bắt đầu cho một phép so sánh với W, và chỉ số trên W xác định ký tự đang được so sánh. Khi bắt đầu, thuật toán được xác định như sau:

m: 0S: ABC ABCDAB ABCDABCDABDEW: ABCDABDi: 0

Chúng ta tiến hành so sánh các ký tự của W tương ứng với các ký tự của S, di chuyển lần lượt sang các chữ cái tiếp theo nếu chúng giống nhau. S[0]W[0] đều là ‘A’. Ta tăng i:

m: 0S: ABC ABCDAB ABCDABCDABDEW: ABCDABDi: _1	

S[1]W[1] đều là ‘B’. Ta tiếp tục tăng i:

m: 0S: ABC ABCDAB ABCDABCDABDEW: ABCDABDi: __2	

S[2]W[2] đều là ‘C’. Ta tăng i lên 3:

m: 0S: ABC ABCDAB ABCDABCDABDEW: ABCDABDi: ___3	

Nhưng, trong bước thứ tư, ta thấy S[3] là một khoảng trống trong khi W[3] = 'D', không phù hợp. Thay vì tiếp tục so sánh lại ở vị trí S[1], ta nhận thấy rằng không có ký tự 'A' xuất hiện trong khoảng từ vị trí 0 đến vị trí 3 trên xâu S ngoài trừ vị trí 0; do đó, nhờ vào quá trình so sánh các ký tự trước đó, chúng ta thấy rằng không có khả năng tìm thấy xâu dù có so sánh lại. Vì vậy, chúng ta di chuyển đến ký tự tiếp theo, gán m = 4i = 0.

m: ____4S: ABC ABCDAB ABCDABCDABDEW:   ABCDABDi:   0 	

Tiếp tục quá trình so sánh như trên, ta xác định được xâu chung "ABCDAB", với W[6] (S[10]), ta lại thấy không phù hợp. Nhưng từ kết quả của quá trình so sánh trước, ta đã duyệt qua "AB", có khả năng sẽ là khởi đầu cho một đoạn xâu khớp, vì vậy ta bắt đầu so sanh từ vị trí này. Như chúng ta đã thấy các ký tự này đã trùng khớp với nhau ký tự trong phép so khớp trước, chúng ta không cần kiểm tra lại chúng một lần nữa; ta bắt đầu với m = 8, i = 2 và tiếp tục quá trình so khớp.

m: ________8S: ABC ABCDAB ABCDABCDABDEW:     ABCDABDi:	  __2

Quá trình so khớp ngay lập tức thất bại, nhưng trong W không xuất hiện ký tự ‘ ‘,vì vậy, ta tăng m lên 11, và gán i = 0.

m: ___________11S: ABC ABCDAB ABCDABCDABDEW:      ABCDABDi:      0

Một lần nữa, hai xâu trùng khớp đoạn ký tự "ABCDAB" nhưng ở ký tự tiếp theo, 'C', không trùng với 'D' trong W. Giống như trước, ta gán m = 15, và gán i = 2, và tiếp tục so sánh.

m: _______________15S: ABC ABCDAB ABCDABCDABDEW:        ABCDABDi:	     __2

Lần này, chúng ta đã tìm được khớp tương ứng với vị trí bắt đầu là S[15].

Thuật toán và mã giả của thuật toán tìm kiếm

Bây giờ, chúng ta tìm hiểu về sự tồn tại của bảng "so khớp một phần"(partial match) T, được mô tả bên dưới, giúp ta xác định được vị trí tiếp theo để so khớp khi phép so khớp trước đã thất bại. Mảng T được tổ chức để nếu chúng ta có một phép so khớp bắt đầu từ S[m] thất bại khi so sánh S[m + i] với W[i], thì vị trí của phép so khớp tiếp theo có chỉ số là m + i - T[i] trong S (T[i] là đại lượng xác định số ô cần lùi khi có một phép so khớp thất bại). Mặc dù phép so khớp tiếp theo sẽ bắt đầu ở chỉ số m + i - T[i], giống như ví dụ ở trên, chúng ta không cần so sánh các ký tự T[i] sau nó, vì vậy chúng ta chỉ cần tiếp tục so sánh từ ký tự W[T[i]]. Ta có T[0] = -1, cho thấy rằng nếu W[0] không khớp, ta không phải lùi lại mà tiếp tục phép so sánh mới ở ký tự tiếp theo. Sau đây là đoạn mã giả mẫu của thuật toán tìm kiếm KMP.


algorithm kmp_search:  input:    mảng ký tự, S (đoạn văn bản)    mảng ký tự, W (xâu đang tìm)  output:    một biến kiểu nguyên (vị trí (bắt đầu từ 0) trên S mà W được tìm thấy)  define variables:    biến nguyên, m ← 0     biến nguyên, i ← 0     mảng nguyên, T   while m + i nhỏ hơn độ dài của sâu S, do:    if W[i] = S[m + i],      let i ← i + 1      if i bằng độ dài W,        return m    otherwise,      if T[i] > -1,        let i ← T[i], m ← m + i - T[i]      else        let i ← 0, m ← m + 1        return độ dài của đoạn văn bản S

Độ phức tạp của thuật toán tìm kiếm

Với sự xuất hiện của mảng T, phần tìm kiếm của thuật toán Knuth–Morris–Pratt có độ phức tạp O(k), trong đó k là độ dài của xâu S. Ngoại trừ các thủ tục nhập xuất hàm ban đầu, tất cả các phép toán đều được thực hiện trong vòng lặp while, chúng ta sẽ tính số câu lệnh được thực hiện trong vòng lặp; để làm được việc này ta cần phải tìm hiểu về bản chất của mảng T. Theo định nghĩa, mảng được tạo để: nếu một phép so khớp bắt đầu ở vị trí S[m] thất bại khi so sánh S[m + i] với W[i], thì phép so khớp có thể thành công tiếp theo sẽ bắt đầu ở vị trí S[m + (i - T[i])]. Cụ thể hơn, phép so khớp tiếp theo sẽ bắt đầu tại vị trí có chỉ số cao hơn m, vì vậy T[i] < i.

Từ điều này, chúng ta thấy rằng vòng lặp có thể thực hiện 2k lần. Với mỗi lần lặp, nó thực hiện một trong hai nhánh của vòng lặp. Nhánh thứ nhất tăng i và không thay đổi m, vì vậy chỉ số m + i của ký tự đang so sánh trên S tăng lên. Nhánh thứ hai cộng thêm i - T[i] vào m, và như chúng ta đã biết, đây luôn là số dương. Vì vậy, vị trí m, vị trí bắt đầu của một phép so khớp tiềm năng tăng lên. Vòng lặp dừng nếu m + i = k; vì vậy mỗi nhánh của vòng lặp có thể được sử dụng trong tối đa k lần, do chúng lần lượt tăng giá trị của m + i hoặc m, và m ≤ m + i: nếu m = k, thì m + i ≥ k, vì vậy: do các phép toán chủ yếu tăng theo đơn vị, chúng ta đã có m + i = k vào một thời điểm nào đó trước, và vì vậy thuật toán dừng.

Do đó vòng lặp chủ yếu thực hiện 2k lần, độ phức tạp tính toán của thuật toán tìm kiếm chỉ là O(k).